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On the analytic treatment of non-integrable difference 
equations 

D S Broomhead and G Rowlands 
Department of Physics, University of Warwick, Coventry, CV4 7AL, England 

Received 24 May 1982 

Abstract. Guided by general features of the solution of non-integrable difference equations 
that emerge from KAM theory, a local perturbation theory is developed. This captures, 
both qualitatively and quantitatively, all the essential features of the solution. The method 
is applied to the ‘standard’ map of Chirikov. 

1. Introduction 

There has been a growing realisation, particularly over the last decade, that a whole 
range of simple equations can sustain very complicated dynamical behaviour, without 
the ad hoc introduction of stochastic terms. This has led to a considerable interest 
in the physical implications of nonlinearity as it occurs in a wide variety of fields of 
study. For example, the three coupled first-order ordinary differential equations of 
Lorenz (1963) have solutions corresponding to motion on a so-called strange attractor. 
Whilst first-order difference equations, for example the logistic equation, have sol- 
utions showing chaotic behaviour. The ‘standard’ map of Chirikov, namely, 

P,,+l = P,, -K sin e,,, e,,+l = e,, +P,,+~ (1.1) 

can, for suitable values of K ( K  a l ) ,  give rise to solutions which are pseudo-random. 
(This latter example is a model of a conservative or area-preserving system.) 

All these equations have the common feature of being nonlinear and deterministic 
while for some range of parameters their solutions are pseudo-random or chaotic. 

It is important to realise that apart from their intrinsic mathematical interest these 
equations arise naturally in non-trivial applications. The Lorenz equations are model 
equations describing turbulent motion of liquids and gases and the presence of 
pseudo-randomness in the solutions has important implications for weather forecasting 
(Lorenz 1963). The logistic equation 

Y ~ + I  = A y n ( l  - y n )  

describes the population density, y,,, of a self-limiting species which has non-overlap- 
ping generations. Though the biological significance of this equation is limited there 
are a number of important ecological problems which may be posed in the form of 
sets of coupled difference equations (see for example May 1976). The standard map 
itself arises in the study of the motion of charged particles in non-uniform magnetic 
fields. Then the pseudo-random behaviour leads to enhanced diffusion which is 
important in the design of fusion reactors (Cohen and Rowlands 1981). In fact 
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10 D S Broomhead and G Rowlands 

Chirikov refers to the map as the ‘standard’ map because it arises whenever one 
attempts to study non-integrable Hamiltonian systems (Chirikov 1979). 

The common feature of these models is that a change in the value of the parameters, 
A ,  K ,  and the Reynolds number in the case of the Lorenz model, leads to a qualitative 
change in the nature of the solution. A relatively simple obviously deterministic 
solution changes to one which is extremely complicated. Such solutions, although 
arising from deterministic equations, have the appearance of being random and are 
termed pseudo-random or chaotic. 

A unification in the study of such equations can be brought about by considering 
them as examples of dynamical systems. The object of the present paper is to study 
those dynamical systems which are area preserving. Such systems have a strong 
connection with classical Hamiltonian systems. For example in the standard map, 
(e, P) may be thought of as the canonically conjugate coordinate-momentum coordin- 
ates. In the study of conservative systems the ‘integrable’ ones play a special role. 
The solutions, or trajectories, of such systems may in principle be expressed in closed 
analytic form, are deterministic and decidedly non-random. However, the vast major- 
ity of systems are non-integrable. They have been studied over a long period of time 
and in particular various perturbative schemes have been introduced attempting to 
relate them to adjacent integrable systems. Unfortunately the question of the conver- 
gence of these methods is far from simple being generally plagued with the problem 
of resonant denominators. Further, the solution of non-integrable systems is expected 
to be extremely complicated, witness the phase plane portrait first given by Arnold 
and reproduced by many authors. (See for example the review articles Jorna (1978) 
and Whiteman (1977). These references give excellent introductions to the basic 
problem discussed in this paper.) 

However, though the solutions are complicated, certain qualitative features exist 
and these have been studied in detail. Arnold has shown that for integrable systems 
the solution is confined to lower dimensional regions, imbedded within the phase 
space, having the topology of tori. To each torus one can associate a coordinate 
system consisting of a set of angles (one angle per distinct irreducible closed loop) 
and the motion on the torus is then specified by a set of winding numbers (frequencies) 
corresponding to these angular coordinates. Theorems arising from the work of 
Kolmogorov, Arnold and Moser (KAM) tell one that for sufficiently small non- 
integrable perturbations the qualitative features of the solution remain unchanged, 
except in the neighbourhood of those tori where the winding numbers contain rational 
relationships. On these troublesome (resonant) tori the PoincarC-Birkhoff theorem 
tells one that, under the perturbation, a finite set of periodic orbits remain which, 
when viewed using a PoincarC section, form a string of alternating elliptic and 
hyperbolic periodic points. Associated with each hyperbolic point are trajectories of 
immense complexity which wind into tighter and tighter wiggles while still remaining 
in a finite region of the phase space. Repeated application of these theorems shows 
that each elliptic point is in reality just a microcosm of the whole. 

In summary the complexity of the solution arises from two distinct mechanisms, 
Firstly the perturbation produces a breakup of regions surrounding elliptic fixed points 
into finer and finer arrays of elliptic and hyperbolic fixed points, and secondly it 
produces in the region of these hyperbolic points, trajectories of immense complexity, 

A glance at diagrams such as that given by Arnold gives one the impression that 
any analysis would be prohibitively complicated. However, by a judicious choice of 
perturbation methods, guided by the qualitative features one expects from KAM theory, 
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one can obtain analytic results which are relatively simple. It is the purpose of the 
present paper to illustrate this procedure with reference to the standard map. The 
methods are, as will be appreciated, much more general. 

A straightforward extension of the many-time method of perturbation theory as 
applied to differential equations is used here to study difference equations. (For an 
introduction to many-time methods see for example Nayfeh (1973).) The first point 
that emerges from such a study is that the method can adequately describe one of 
the main qualitative features described above. Namely, a resonant trajectory associ- 
ated with an integrable system can, when perturbed, give rise to a string of elliptic 
and hyperbolic periodic points each surrounded by its own characteristic trajectories. 
Surrounding this array are trajectories which have been distorted in a continuous 
manner by the perturbation. A basic and extremely important aspect of the method 
is that not only are those trajectories associated with resonances treated correctly, 
but so also are those which are near resonance. The method removes the difficulties 
of both resonant and near-resonant denominators at one and the same time. Indeed 
we are able, by concentrating our attention on particular resonant tori, to 'filter out', 
through the ordering of the perturbation expansion, the effects of close higher-order 
resonances. By relinquishing the need to obtain a globally valid expansion we are 
able to handle, step by step, each resonance as it becomes significant to the order of 
the calculation. This is in contrast with the traditional canonical perturbation methods 
and is a reason for the success of the present method. 

The second important characteristic of the method is that the equations describing 
the 'slower' time-scale variations are themselves nonlinear second-order difference 
equations. Thus analysis of these equations using the same basic method generates 
a whole hierarchy of difference equations. This evolution of a hierarchy of equations 
serves to describe the microcosm of the structure of the solution. It may be stopped 
at a desired level by replacing the difference equation by an appropriate differential 
one. In this way this aspect of the complexity of the Arnold diagram can be understood 
quantitatively. 

To understand the complexity associated with each hyperbolic point, the unpertur- 
bed system has been taken to be one which is integrable, has a single heteroclinic orbit, 
and whose solution is known analytically. The perturbation theory shows that the 
perpendicular displacement of the orbit away from the unperturbed heteroclinic orbit 
is proportional to a bounded oscillatory term divided by what is effectively the velocity 
of motion along the unperturbed orbit. For orbits which approach the saddle points 
associated with the heteroclinic orbit, the velocity becomes small and hence the large 
perpendicular excursions are to be expected. In particular along the heteroclinic orbit 
the velocity is proportional to e-"" where CY is a constant and n the order of iteration 
and heme the amplitude of the perpendicular oscillations is proportional to e"". Of 
course for sufficiently large n the perturbation theory breaks down but it is found 
that the results obtained are a good approximation for a significant number of 
oscillations. Using these results it is possible to associate with each unperturbed 
heteroclinic orbit leaving a saddle point an exponentially growing width in which the 
true orbit undergoes oscillatory motion with increasing frequency. 

Of course, one is very aware of the pitfalls that can arise when applying perturbation 
theory to the type of problem discussed in this paper. Although we have not attempted 
to obtain analytic conditions for the range of applicability of the method, which in all 
probability gives an asymptotic series, we feel that by ensuring that it gives the 
qualitative behaviour demanded by the KAM and PoincarbBirkhoff theorems, the 
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errors will be small. The results have been compared with numerical simulations from 
which it is concluded that the method yields both good qualitative and quantitative 
results. 

For example, second-order theory as applied to the standard map gives the 
condition for chaotic orbits to extend across phase space to be K < 1.09 which compares 
well with the numerically obtained value of unity (Lichtenberg 1979). 

In the next section the perturbation method is applied to (1.1) and it shows how 
a string of elliptic and hyperbolic points arise associated with each of the lowest-order 
resonances. A detailed study of the first few of these resonances gives a phase portrait 
which shows excellent agreement with the main features obtained numerically. At 
this stage of the analysis the difference equation obtained describing the slow variation 
of 8, and P, is approximated by replacing it by a differential equation. This procedure 
is valid except near the hyperbolic points which, as mentioned above, are known to 
be associated with chaotic behaviour. 

A more rigorous study of the behaviour near a hyperbolic point is made in § 3. 
This analysis is based on the fact that the difference equation 

en+l + en-1 = ae,/(l -03, 
has an exact solution 

0, = A tanh(nx + a )  

where a is an arbitrary constant, A = tanh x and tanh' x = 1 - a/2.  This solution 
corresponds to an isolated heteroclinic orbit which shows smooth variation with n 
and the phase parameter a .  Our study of the behaviour of orbits about a string of 
hyperbolic points is based on a perturbation method which takes the above solution 
as its lowest-order contribution. In this way an estimate of the perpendicular displace- 
ment, d,, of the solution from the above unperturbed orbit has been obtained. This 
is used to obtain the width of a region about the heteroclinic orbit in which the actual 
orbit is assumed to be chaotic. 

2. The standard map 

The many-time perturbation theory as applied to differential equations (Nayfeh 1973) 
is extended in this section to treat difference equations. In particular the standard 
map (1.1) is treated in detail. This map may be written as 

+ - 28, = -K sin 8,. (2.1) 

A formal expression in powers of K leads to lowest order 

8:') = a + nP, (2.2) 

where, to this order, P is the constant momentum P,, and a is a constant. To next 
order we find 

(2.3) LO'," =8!,'i1 +8!,1?l -28:' = -K sin(a +nP), 

which has the solution 

e',') = K sin(a + n ~ ) / 4  s in*(~/2) .  (2.4) 
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This expansion obviously breaks down when P = 2nm, m an integer, and this corres- 
ponds to the primary resonance. 

Motivated by the success of many-time perturbation theories we consider a to be 
a ‘slowly’ varying function of n and use this variation to remove singular behaviour; 
we formally write e, = a,  +nI, & + I  = a,+l+ (n + 1)P = a, + (n + 1)P + (a,+l -a,) and 
treat -a, as of order JK.  This gives rise to an extra term, -(a,+l+ a,-l - 2a,), 
on the right-hand side of (2.3) which we treat as of order K. For P = 27rm this equation 
may be solved in the spirit of the many-time formulation by ignoring the n variation 
of the an’s. In this way one obtains 

e‘,‘’= -~[~s ina ,+(a ,+ l+a , - l -2a , ) ]n  2 , 

and to avoid non-physical behaviour of the momentum P‘,‘’ we must satisfy the 
consistency condition 

a,+l + - 2a, = - K sin a,. (2.5) 
This is of course the same form as the original equation for 8, but now it refers to 
the slow n variation of the an’s. We relegate a discussion of this equation until we 
have studied the higher-order resonances. 

Before so doing it is extremely important to stress that the above treatment not 
only applies for P = 2m7r but to all values of P which are to O(&) in the vicinity 
of 2m7r, since the difference of order J K  may be absorbed into the slow variation 
of a. Thus the perturbation method treats all unperturbed orbits in the vicinity of 
the resonance and notJust the isolated resonant one. 

If P # 2m7r + O(JK), then (2.4) is applicable with a constant and one may proceed 
to next order to find 

0:) - _ _  : 2 ~ ~  sin[2(a + np)]/sin2(p/2) sin2(P). 

Now the method breaks down if P = 27r(1/2), the second-order resonance condition. 
For P = 27r(1/2) + O ( K )  we proceed as above and allow a to vary on a K scale. The 
new consistency condition is 

a,,l+a,-l-2a = --:K~ sin(2a,), 

which, except for a normalisation of the a’s, is of the same form as (2.5) with, however, 
an effective value of K, K, say, given by K, = K2/4.  Note that with this consistency 
condition satisfied we have = 0 so that for 1 = 1 

e, =(an+7rn)+& sin(a,+7rn)+0(K3), (2.6) 
from which the corresponding value of P, (= 6, - 8, -1) is readily calculated, 

The next-order resonance is treated in the same way, but now P=27r(1/3), and 
for 1 = 1, 

8, = ( a ,  +27rn/3)+4K sin(a, +27rn/3)+&K2 sin[2(a, +27rn/3)]+O(K4). (2.7) 
Finally, if we write a,  = &/3, ii, satisfies (2.5) with an effective K given by K ,  = K3/8.  

The higher resonances may be treated in the same way, and in particular for the 
Nth resonance where P = 27rl/m (m an integer having no common factor with I )  one 
obtains an expansion in powers of K but with a term of order K N  missing. The 
consistency condition (2.5) is satisfied by 5, = ma, with an effective value of K given 
by K, = ( K / u ) ~ ,  where U is a function of m. For m = 1 ,2 ,3 ,4 ,5 ,  U = 1, 2, 2, 1.76, 
and 1.66. 
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Using the above results one may eliminate n and express P,,(=t9, -O, , -d  as a 

P, = a ,  - a n - l ,  (2.8) 

P, = 7 ~ + t K  sin@,-~&2sin2@n+(a,-a,,-l)(l-~ sinf3,,)+O(K3), (2.9) 

and for P = 2 d / m ,  m = 3, 1 = 1, 2, 

P,, = P + [K/2 sin(P/2)] cos(6, - P/2) 

function of e, and a,. For the three lowest resonances we obtain 

+[K2/16  sin(P) sin2(P/2)][2 cosz(P/2) -cos 2&] 

+(a,  -a,,-l)[l + K / 4  sin2(P/2) cos(@,, -P) ]+O(K3) .  (2.10) 

For small enough values of K, one expects that a reasonable approximation to 
(2.5) may be obtained by replacing it by an equivalent differential equation. The 
simplest approximation is to replace (2.5) by the differential equation 

d2a/dn2 = -K sin a ,  (2.11) 

whose solution in the form of a phase-plane portrait is shown in figure 1. For a 
particular choice of the integration constant, which distinguishes the various orbits in 
the phase plane, one obtains a heteroclinic orbit. From the discussion in the introduc- 
tion of the present paper, one expects the replacement leading to (2.11) to break 
down in the vicinity of this orbit. The nature of the solution in the vicinity of this 
orbit is discussed in detail in the next section where it is shown that, though it behaves 
very irregularly, the complexity is restricted to a narrow band about the separatrix. 
This suggests that an approximation to a,,, where a, is replaced by a smooth function 
of n, will give good results except in the neighbourhood of the separatrix. This type 
of approximation will be better the smaller the value of K,, and hence better for the 
higher resonances. 

A smoothing approximation to an equation of the form (2.5) is discussed in 
appendix 1 where analytic expressions for (a,, -a,,-l) as a function of e,,, K, and a 
constant of integration E are obtained. The constant E distinguishes the orbits in 
the phase plane with E = K,(1+ 5KJ48) corresponding to the separatrix. Using this 

P I  I 
I I 

0 Zn a 

Figure 1. The phase portrait of the complete pendulum (equation (2.11)) 
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result, together with the appropriate definition of a‘, and K,, we may obtain 
expressions for P, as functions of e,. We now drop the suffix n in which case P ( 0 )  
gives an analytic expression for the orbits in the (e, P )  phase-plane. 

for the first-order resonance (m = 1) 
The final results are: 

p(e)=+K s ine* ( l -&K c o s e ) [ 2 ~ + 2 ~ ( l + ~ ~ ) c o s ( e + ~ ~ ~ c o s 2 e ) ] ” ~ ,  (2.12) 

for the second-order resonance (m = 2) 

P(e)=.rr+;K sinO*($-QK cos e)[2E+$K2cos(2e-+K sin 8)]1’2+O(K3), 

and for P = 2 4 m ,  m 3 3 , l  not a factor of m, 

P ( 6 ) =  P + K  cos(@ -P/2)/2sin(P/2)+K2[2co~2(P/2)-co~26~/16sinP sin2(P/2) 

(2.13) 

*( l /m)[ I  + K  cos(e - ~ ) / 4  s in2 (~ /2 ) ]  

x [2E + 2(K/2)” cos(m8 - m K  sin 8/4 sin2(P/2)}]”’ + 0 ( K 3 ) .  (2.14) 

For m > 4  the last term does not contribute, so that to O w 3 )  the orbits in the 
phase plane have no heteroclinic points. 

These results are shown in figure 2 as a phase plot of P against e for K values of 
0.5 and 0.97, and should be compared with results obtained by direct numerical 
evaluation of (2.1) and given in figure 3. Except for the random behaviour apparent 
in the numerical results in a narrow band about the separatrices, the agreement is 
excellent. Even after applying the smoothing approximation to the an’s, the present 
perturbation method describes the breakup of resonant tori into strings of elliptic and 
hyperbolic points, one of the two major qualitative features demanded by the general 
theory of dynamical systems. 

The results obtained above may be used to calculate a critical value of K, K ,  say, 
above which there is overlap of the various separatices. Chirikov takes the condition 
K > K ,  as being necessary for the existence of stochastic orbits no longer confined by 
KAM surfaces but connected across phase space. It is apparent from the analytic 

1/2 

Zn 

112 

0 e 2lI 

Figure 2. Smoothed analytic approximations to represent trajectories close to the three 
lowest-order resonances of the Chirikov map: (a)  K = 0.5: ( b )  K = 0.97. 
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Figure 3. Numerical iteration of the Chirikov map close to the same three resonances as 
shown in figure 2: ( a )  K = 0.5; ( b )  K = 0.97. 

results shown in figure 2 that the orbits corresponding to the various resonances come 
closest together near 8 = 0. Thus we adopt as a criterion to calculate K, that the sum 
of the widths of the separatrices equals 2 ~ .  Taking the first four resonances only and 
neglecting terms of O(K5'*) we obtain a value K,= 1.09 (this is of course an upper 
bound), which compares most favourably with values obtained by other authors (see 
Lichtenberg 1979) and the numerically obtained value of 1.0. 

It will be also noticed from the phase-plane plots of the analytic results that the 
orbits associated with the various resonances tend to avoid one another. This 
phenomenon has been discussed by Escande (1979) using the super convergence 
method of Kolmogorov to take into account the interaction of resonances. However, 
this effect arises naturally in the present theory even though we treat each resonance 
separately. 

3. Heteroclinic orbits 

It was shown in the last section that many-time perturbation theory applied to the 
standard map reproduces quantitatively many of the features of the numerical results. 
The major discrepancy is in the vicinity of the separatrix and arises because of the 
smoothing approximation used to treat the difference equation (2.5). In this section 
we look more closely at the region around the separatrix by comparing equation (2.5) 
with an equation which also has a separatrix but for which an analytic solution is 
known. This equation 

4 n + l + 4 n - l  =a4n/(1-4:) ,  (3.1) 
where CY is a constant, has the exact solution 

r#,, = k sn(x, k) sn(nx +b, k). (3.2) 
Here sn(x, k) is a Jacobian elliptic function in the notation of Whittaker and Watson 
(1952), and x satisfies cn(x, k) dn(x, k) = a / 2 .  The constants k and b are the two 
integration constants associated with (3.1). For k = 1 the solution reduces to a 
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heteroclinic orbit given by 

4, = tanh x tanh(nx + b ) ,  (3.3) 

with sech' x = a/2. 
McMillan (1970) showed that the solutions of (3.1) formed a set of invariant curves 

corresponding in the present notation to different values of k. However, the fact that 
an analytic solution can be given, as by (3.2) above, is apparently new. 

We write the basic equation of interest in the form 

(3.4) 

(3.5) 

and treat g(&) as a small correction. Here s is a constant to be determined later. 
Writing 5, = &/s +Sa,, with 4, given by (3.3), then first-order ordinary perturbation 
theory gives 

(3.6) 

A solution to the homogeneous equation is &$,/ab, as is readily seen by differentiating 
(3.1) with respect to b. If one multiplies (3.6) by a4,/ab and sums from n = -a to m 
one finds 

San+l+ San-1- [(I + 4 i )/(I - 4 f ) 2 1 8 ~ n  = g(4n/s)* 

where we have taken Sum to remain finite, possibly going to zero as m + -W. 
From the general theory of heteroclinic orbits it is known that the effect of 

introducing a perturbation is that the orbit bifurcates such that the unstable orbit 
emerging from one hyperbolic point can no longer be identified with the stable orbit 
converging to the other hyperbolic point (Holmes 1979). The procedure leading to 
(3.7) corresponds to summing along the unstable orbit with the hyperbolic point being 
approached as m + --CO. For this reason we may take Sa', at least finite in this limit. 
Further, we expect Sa', to behave more and more wildly as m increases, that is as 
the orbit approaches the other hyperbolic point. The arrow over the Sa, designates 
the direction of motion along the unperturbed orbit. If we consider the variation of 
Sa, along an orbit which converges to this other hyperbolic point, then by analogy 
with (3.7) we have 

with Sa', remaining finite as m + +W. Combining the above two equations gives 

If we define a perturbed momentum by SP, = Sa, - Sa,-l then this equation may be 
rearranged into the form 

- a4.,, aPm ( S F ,  -SP,) --(L%im -82,)-=h(b), 
ab ab (3.9) 

where P, = +, -c$,-~ is the unperturbed momentum. 
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The left-hand side of equation (3.9) is simply related to the perpendicular distance 
between points in the phase plane and the unperturbed orbit. If we define d, as the 
difference between the perpendicular distance of the orbit connected to one of the 
hyperbolic points and that connected to the other, both relative to the unperturbed 
orbit, then 

(3.10) 

This is the main result of this section. 
In a study of a class of nonlinear autonomous differential equations subject to 

non-autonomous perturbations, Mel’nikov has introduced a quantity A which measures 
the perpendicular distance between heteroclinic orbits. The quantity d, is the 
analogous quantity to A but now for autonomous difference equations. The relation- 
ship between Mel’nikov’s work and perturbation theory as applied to differential 
equations has recently been discussed by the authors (Broomhead and Rowlands 
1982). The analysis described in the present section is the extension of this work to 
difference equations. 

The evaluation of h ( b )  for the particular perturbation given by (3.5) is discussed 
in appendix 2 where it is shown that to reasonable accuracy 

d ,  = h (b)/[(&$,/db)’ + (dP,/db)2]”2. 

h ( b )  = A  sin(2rrb/x) 

where A is a known function of x and s but is independent of b. The value of b 
depends on the initial starting point in the iteration of the map. For the unperturbed 
map, (3.1), a particular choice will lead to a set of uniquely specified points in the 
phase plane. An expression for d,, can however be given which is independent of the 
initial point by using (3.3) to express b in terms of 4,. In this manner we obtain 

(3.11) d ,  = ( A / D )  sin{(2rr/x)[tanh-’(~$,/tanh x)]}, 

where 

D’ = (1 - 4k/T2j2[2(1 -4m)4 - 2 sech2 x ( l  -4,)’ + sech4 x] / ( l  -4m)4 
and T = tanh x. 

Before one can apply the above results directly to the Chirikov map it is necessary 
to discuss the relationship between the parameters s, a and K,. We insist that the 
fixed points of the map given by (3.1) agree with those of (2.5). This gives 

srr = tanh x. 

The other criterion we impose is that the eigenvalues of the linear theory about the 
centre are the same. This gives K ,  = 2 -a  = 2 tanh’x so that 

s = K , / 2 x 2 .  

With this identification one can evaluate d ,  as given by (3.10), as a function of 
ii,,,(=d,,,/s). The form of the separatrix is now obtained by adding to the unperturbed 
form as given by (3.3) the perpendicular displacement as given by drn. The final result 
is shown in figure 4, for the case of the primary resonance (5 = a  = e, K,  = K )  for 
K = 0.97. This is to be compared with the form of the separatrix obtained by the 
direct numerical mapping of a line segment using the map as defined by (2.5), and as 
shown in figure 5. The agreement is surprisingly good. The general features of an 
oscillatory form for the separatrix whose amplitude and wave number increase as one 
approaches the hyperbolic point is reproduced by the analytic result. 
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"'I I 

Figure 4. Analytic approximation to the distortion 
of an unstable manifold associated with the primary 
resonance of the Chirikov map with K = 0.97. 

Figure5. The result of 20 iterations of a linear 
segment of the same unstable manifold initially close 
to the hyperbolic field point of the Chirikov map 
(K = 0.97). 

The above form for d, was of course calculated using linear theory and this will 
break down as the orbit gets too close to the hyperbolic point. Further, a detailed 
solution in the form obtained above is not usually required when the shape of the 
orbit gets complicated. It is in most cases sufficient to obtain a bound for the region 
where the orbits go chaotic, that is where the convolutions in the separatrix become 
large. 

We propose to obtain an estimate of this boundary by using orbits of the continuous 
approximation to the Chirikov map which are close to the orbit corresponding to the 
separatrix. The details are given in appendix 3 where it is shown for the continuous 
map that d(G),  the perpendicular distance between points and orbits in the neighbour- 
hood of the separatrix, is given by 

Here k labels the orbits, and k E 1 corresponds to the separatrix. 
We now define k, and hence the particular adjacent orbit which bounds the chaotic 

region, by equating d ( 5 )  to the envelope of d,, namely A/D, in the vicinity of the 
centre. That is we put d = O  in the above and 4, E O  in the expression for D. This 
is done since it is in this vicinity that the expressions for d(G) and d, are valid having 
been obtained by linear theory. This finally gives 

k = 1 *h/{2JKe[1 + (K,/2)2]"2}, 

the f signs corresponding to orbits on either side of the separatrix. For K,<< 1, 
x 2 = K e  and we see from the form of A given in appendix 2 that k - l -  
* exp( -27r 2/ JK,). 

The main idea behind the above procedure is that, away from the separatrix, the 
perturbation will not destroy the smooth orbits. We use the existence of such orbits 
to obtain boundaries for the chaotic region. 



20 D S Broomhead and G Rowlands 

This result has been used to determine orbits on either side of the separatrix which 
serve as boundaries for the chaotic regions. The results are shown in figure 6 ,  where 
these boundaries are given and superimposed on the figure are points obtained by 
direct numerical evaluation of the Chirikov map. This shows that the above estimates 
for the chaotic regions are surprisingly good. 

Figure6. Comparison of the analytical bands for the stochastic layer of the primary 
resonance with the result of numerical iteration of the Chirikov map (K = 0.97). 

4. Conclusions 

A method of perturbation theory has been developed and applied to the 'standard' 
map which gives good quantitative agreement with all the main features of the 
numerical solution. The success of the method depends on two properties. Firstly, 
the perturbation method is local in the sense that different expressions apply to 
different regions of phase space. This allows one to deal with the problem of resonant 
denominators in a successive manner. In fact, the various resonances are treated 
independently and it is assumed there is no interaction. Secondly, it incorporates the 
essential qualitative features one knows about such solutions from KAM theory, the 
PoincarC-Birkhoff theorem and the work of Mel'nikov. 

The results are obtained in the form of smooth orbits in the (6 ,P)  phase-plane, 
and for the lowest resonances are given by (2.12), (2.13) and (2.14). On these is 
superimposed a band which represents the region where chaotic motion is expected. 
The structure of such bands is described in detail in 4 3. Comparison between the 
analytic expressions and numerical simulations can be made by referring to the figures. 

Finally we consider the relationship between the present work and that of Escande 
and Doveil (1981). These authors considered the motion of a particle governed by 
the non-autonomous Hamiltonian 

H = u 2 / 2 - M c o s x - P c o s [ k ( x - t ) ] .  

They solve this problem by a renormalisation procedure which at each stage reproduces 



Non-integrable diference equations 21 

a Hamiltonian of the above form but with renormalised coefficients. The stages of 
this procedure follow closely the sequences of denominators in a continued fraction 
approximation to an irrational winding number. It is then claimed that if the renor- 
malised coefficients approach zero as the continued fraction approaches the irrational 
winding number, then there exists a KAM surface associated with this number. The 
onset of chaos, allowing particle motion throughout the phase plane, is seen as the 
condition that all such KAM surfaces are destroyed. 

The renormalisation procedure of Escande and Doveil is an approximate one, 
since at each stage only the primary resonances closest to the given irrational surface 
are retained, and the Hamiltonian is expanded so as to include only linear and quadratic 
terms in the deviation of the action from that specifying this surface. However, they 
are able to carry out the renormalising procedure to all orders and hence obtain a 
criterion for the destruction of KAM surfaces. 

In the present work we have studied the lowest-order resonances only and obtained 
a criterion for chaos throughout the phase plane following Chirikov by imposing a 
resonance overlap condition. It is important to note that this criterion as applied in 
the present paper requires inclusion of the stochastic width about each separatrix 
since adjacent resonances tend to avoid overlap. This latter point is discussed at the 
end of § 2. The criterion we have given leads to an estimate in good agreement with 
numerical computation. However, in the light of Escande and Doveil’s work we can 
reinterpret our method. The method of solution is not restricted to the low-order 
resonances. In principle we can apply the perturbation method to any order resonance 
and find a solution in the form of a closed curve superimposed on which is a set of 
solutions which satisfy a suitably renormalised standard map (unlike the procedure 
of Escande and Doveil our renormalisation produces exactly the standard map at 
each step and one does not have to neglect higher harmonics). Thus in principle one 
could apply this renormalisation to a sequence of resonances which eventually approach 
an irrational limit. Then one could apply the simple criterion of non-overlap of 
adjacent resonances in the sequence to define the existence of a KAM surface. Unfortu- 
nately, although the renormalised standard map can be seen to be reproduced at each 
stage, the exact rescaling properties of the parameter are difficult to determine so that 
the above procedure has not, as yet, been carried out. 
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Appendix 1. 

The purpose of this appendix is to discuss a ‘smooth’ approximation to a difference 
equation of the form (2.5). An equation of this form, but with U ,  replaced by d ,  
and K by K,, was generated as a consistency condition by the formal perturbation 
theory discussed in § 2. For the mth order resonance d ,  = mu, and K, = (K/u)”, 
where u is a function of m. 
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If we assume 6, to be a smooth function of n and Taylor series about 6, 
then we have 

d2d/dn2 +&d4d/dn4+ . . . = -K, sin d. 

Introduction of the momentum P = dd/dn allows us to write this as 

(Al .1)  

(d/dci)P’ +&d/d6)P2[(d’P’/d62) - (dP2/d6)] + . . . = -2K, sin 6, 

which may be solved by perturbation theory treatingP2 = O(K,). In this way we obtain 

P’ = 2E +2K, COS 6 ( l+&)  +:K: c 0 ~ ( 2 6 ) + 0 ( K ~ )  E 2(E - V ( 6 ) ) .  (A1.2) 

Here E is the integration constant which specifies the particular orbit. 
Using this result, the appropriate Taylor series, and noting that the sum of the 

even order derivation may be summed using (A1 . l ) ,  we find 

6, =P[1 -(K,/6) cos 6]+(Ke/2)sin 6 +O(KZ’*). (A1.3) 

in terms of 8, rather than 6,. For the primary 
resonance 6, =a,, 6,  =a,  + 2 n r  so that V ( 6 ) =  V(8,), and (A1.3) is now an 
expression for a, - a,-l as a function of 8,. For the second-order resonance, 6, = 2 4 ,  
K , = K 2 / 4  and a, and 8, are related by (2.6). Simple algebraic manipulation yields 

2(u, - u , - . ~ )  = *[2E + (K2/2) cos(28, - (K/2) sin 8n)]1’2+ (K2/S) sin(28,) + O(K3).  

Similar treatment of the third-order resonance yields 

3(a,-a,- l )=st[2E+(K3/8)cos(38,  -K sin 8,)]”*+(K3/16)sin38, +O(K4).  

It is essential to maintain the symmetry of V ( 6 )  with respect to ii when making 
the transformation from 6 to 0,. For this reason terms of the form cos(38, - K  sin 8,) 
that occur in the above expressions must not be expanded in powers of K. 

Finally, we may express 6, 

Appendix 2. 

The basic problem is to evaluate h ( 6 )  as defined by (3.8) for 4, given by (3.3) and 
g(&) by (3.5). To illustrate the method used we consider in detail one particular 
term, namely 

+-OO tanh(nx + 6 )  
-m cosh’(nx + 6)’  

- +a 84, h l ( 6 )  = 1 -4, = tanh’x 1 
-m a6 

Use of the Poisson summation formula gives 
+m 

h l ( b )  = tanh’x 1 F(2nr /x ) ,  
--oc 

where 

The integral may be evaluated using the Cauchy residue method. There are an infinite 
number of double poles at y = i(2m + 1 ) r / 2  where m = 0, 1, 2 , .  . . , with residues 
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exp(-1(2m + 1 ) ~ / 2 )  cosechL x. Summing over the residues is easily accomplished 
giving 

+a exp(- i2n~b/x)  
--CO sinh(n.rr2/x) ’ 

hl (b)  = i.rrtanh2 x 1 (2n.rrlx) 

Because of the denominator, the terms in this series converge exponentially fast and 
thus to a good approximation we need only consider the lowest-order term. This gives 

hl(b) = [27r tanh2 x/sinh(.rr2/x)] s in (2~b lx ) .  

The evaluation of h (b) may be accomplished using the above method if one expands 
sin q5,, as a power series in dn. The term dJ(l-4;) in g(&) does not contribute to 
hl(b).  Then to the same approximation as above one finds 

hl(b) = A  sin(2.rrb/x) 
where 

and 

A , ( I )  = lim [(a2m+2/ax2m+2)iei‘x coshZm + (x ))I. 
x - 0  

Appendix 3. 

To lowest order, the continuous approximation to the Chirikov map takes the form 

d2d/dn = -K, sin d. 

This is readily solved to give 

sin(d/2) = sn(7n + b, k )  

where r) = JKJk and k is a parameter which labels the various orbits. In particular 
k = 1 corresponds to the separatrix. In the vicinity of the separatrix we may write 
d = a +Sa with sin(a/2) = tanh U. and 

Sa = (1 - k) sech Uo(sinh U0 cosh (io+ Uo-26) 

where U0 = n t k ,  + b. By analogy with equations (3.9) and (3.10) we define a perpen- 
dicular distance J ( a )  in the following manner 

d ( a )  = (SPaaIab -SaaP/ab)/[(a~/ab)~~[aP/ab)~]~’~ 

d ( a )  = 2&,(1- k)/{[l -sin2(a/2)][1 + K ,  sin2(a/2)]}”*. 

Using the above we find 
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